IMPLEMENTATION OF INTENSITY FRONTIER BEAM INFORMATION DATABASE

Igor Mandrichenko, FNAL CHEP 2012, New York, NY

Mission

 The IFBeam Database system is responsible for extraction of data from the FNAL accelerator division systems and providing it to the different experiments involved in the Intensity Frontier programs.

Requirements

- Receive beams conditions data from the accelerator in real time
- Store information in the relational database
- Make the data available to online monitoring, data processing and analysis systems of the intensity frontier experiments
- Data loss must be minimized
- Acceptable data latency is 1 hour for long term data and ~minute for monitoring data
- Data preservation and recovery procedures
- Long term data should be stored forever
 - Used for data processing
- Short term data should be stored for several days
 - Used for online monitoring

Data Streams

- Slow data stream
 - All data (short term and long term) stored in the database
 - Buffered on the collector nodes and stored later by the Merger
 - Latency ~5 minutes
- Fast event stream
 - Only last event is stored is stored in the database
 - Stored by the Collector directly
 - Latency < 1 second
 - Can be lost
- Event timestamps
 - Sent as a UDP message from the Collector to the Web Server
 - Latency < 1 second
 - Can be lost

Database Schema

- Data tied to event via foreign key
- Short term and long term data stored in 2 different tables, inheriting from common "data" table
- Daily short term data cleanup uses "concrete" short term table
- Data access from "abstract" table

IFBeams Data Collection

- Event rate from 0.5Hz to 15Hz in peak
- Data per event
 - ~ 50 devices, ~1500 floating point numbers – long term
 - ~450 devices, ~2000 f.p. numbers – short term
- Current counts:
 - Long term data 400M
 - Short term data 20M
 - Events: 52M
- Current size:
 - 250 GB
 - mostly long term data (200GB, including 60GB index)
 - Estimated growth 0.5-1TB/year
 - Estimated end of life size ~10TB

Reliability of Data Collection

- Data is redundantly collected and buffered by 2 identical Collectors running on 2 different computers
 - Merger eliminates the redundancy and stores data into the database
 - More Collectors can be added
- Any one Collector can be turned off without any effect on the system
- Data can be buffered by Collectors for weeks in case of database or network outage

Data Access

- Applications get data via REST/HTTP from the web data server
 - XML
 - CSV
 - JSON
- Redundant web server infrastructure increases availability
- Interactive Data Browser
- Dashboard
- Data collection controls

Reliability of Storage

- Data is stored on 2 computers
- Postgres hot standby replication is used for replication
- Loss of any single computer is easily recoverable
- Disaster recovery: weekly backups to external network attached storage

Dashboard

IF Beam Data Server

Home | Data | Dashboard | Monitor | A9 Monitor | DB Status | Browser | Bundles | Login

Dashboard

✓ Auto-refresh refresh now

- Used to monitor health of all the components of the system, from the collector to web data server
- Recorded event frequency
- Measurements from key devices